21.节能环保日益受到人们的重视,水污染治理也已成为“十三五”规划的重要议题.某地有三家工厂,分别位于矩形的两个顶点
、
及
的中点
处,
km,
km,为了处理三家工厂的污水,现要在该矩形区域上(含边界),且与
、
等距离的一点
处,建造一个污水处理厂,并铺设三条排污管道
、
、
.设
(弧度),排污管道的总长度为
km.
(1)将表示为
的函数;
(2)试确定点的位置,使铺设的排污管道的总长度最短,并求总长度的最短公里数(精确到0.01 km).
17.如图所示,是两个垃圾中转站,
在
的正东方向
千米处,
的南面为居民生活区. 为了妥善处理生活垃圾,政府决定在
的北面建一个垃圾发电厂
. 垃圾发电厂
的选址拟满足以下两个要求(
可看成三个点):①垃圾发电厂到两个垃圾中转站的距离与它们每天集中的生活垃圾量成反比,比例系数相同;②垃圾发电厂应尽量远离居民区(这里参考的指标是点
到直线
的距离要尽可能大). 现估测得
两个中转站每天集中的生活垃圾量分别约为
吨和
吨,问垃圾发电厂该如何选址才能同时满足上述要求?
18.设公差不为的等差数列
的首项为
,且
、
、
构成等比数列。
(1)求数列的通项公式;
(2)若数列满足
,
,求
的前
项和
。
16.中,
,
的平分线
交边
于
,且
,
,则
的长为___________.
(1)(
);
(2)点在
中垂线上离点
距离为
km处,
取得最小值
km.
(1)由已知得,
即(其中
)
(2)记,则
,则有
,
解得或
由于,所以,当
,即点
在
中垂线上离点
距离为
km处,
本题以实际问题为背景,主要考查函数解析式的构建以及函数最值的求解,考查数学建模的能力,是中档题.以实际问题为背景的生活中的优化问题,这类问题在近几年各省市的高考试卷中频频出现,是高考的热点问题.这类问题往往涉及到建立函数关系式和函数的最值,一般先设自变量、因变量,建立函数关系式,并确定其定义域,求最值时可利用三角函数的有界性、函数的单调性,也可直接利用导数求最值,要掌握求最值的方法和技巧.也注意结果应与实际情况相符合.
先建立函数,再利用三角函数的有界性求的范围,最后得到需要的结果.
建立函数过程中,容易遗忘定义域,还要注意实际情况;求最值的有多种方法,还要注意结果应与实际情况相符合.