16.计划在某水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水年入流量X(年入流量:一年内上游来水与库区降水之和,单位:亿立方米)都在40以上,其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年,将年入流量在以上三段的频率作为相应段的概率,并假设各年的年入流量相互独立.
(1)求未来4年中,至多有1年的年入流量超过120的概率.
(2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量X限制,并有如下关系:
若某台发电机运行,则该台年利润为5000万元;若某台发电机未运行,则该台年亏损800万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台?
13.将高三(1)班参加体检的36名学生,编号为:1,2,3,,36,若采用系统抽样的方法抽取一个容量为4的样本,已知样本中含有编号为6号、24号、33号的学生,则样本中剩余一名学生的编号是 .
18.在一次数学考试中,第22题和第23题为选做题. 规定每位考生必须且只须在其中选做一题. 设某4名考生选做每一道题的概率均为 .
(1)求其中甲、乙两名学生选做同一道题的概率;
(2)设这4名考生中选做第22题的学生个数为,求的概率分布列及数学期望.
18.某人居住在城镇的A处,准备开车到单位B处上班. 若该地各路段发生堵车事件都是相互独立的,且在同一路段发生堵车事件最多只有一次,发生堵车事件的概率如图.(例如:A→C→D算作两个路段:路段AC发生堵车事件的概率为,路段CD发生堵车事件的概率为.
(1)请你为其选择一条由A到B的最短路线(即此人只选择从西向东和从南向北的路线),使得途中发生堵车事件的概率最小;
(2)若记路线A→C→F→B中遇到堵车次数为随机变量,求的数学期望
解:(1)依题意,,
,
由二项分布得,在未来4年中至多有1年的年入流量超过120的概率为
(2)记水电站年总利润为Y(单位:万元).
①安装1台发电机的情形.
由于水库年入流量总大于40,故一台发电机运行的概率为1,
对应的年利润Y=5000,E(Y)=5000×1=5000.
②安装2台发电机的情形.
依题意,当40<X<80时,一台发电机运行,此时Y=5000-800=4200,因此P(Y=4200)=P(40<X<80)=p1=0.2;当X≥80时,两台发电机运行,此时Y=5000×2=10 000,因此P(Y=10 000)=P(X≥80)= p2+p3=0.8.由此得Y的分布列如下:
所以,E(Y)=4200×0.2+10 000×0.8=8840.
③安装3台发电机的情形.
依题意,当40<X<80时,一台发电机运行,此时Y=5000-1600=3400,因此P(Y=3400)=P(40<X<80)=p1=0.2;当80≤X≤120时,两台发电机运行,此时Y=5000×2-800=9200,因此P(Y=9200)=P(80≤X≤120)=p2=0.7;当X>120时,三台发电机运行,此时Y=5000×3=15 000,因此P(Y=15 000)=P(X>120)=p3=0.1.由此得Y的分布列如下:
所以,E(Y)=3400×0.2+9200×0.7+15 000×0.1=8620.
综上,欲使水电站年总利润的均值达到最大,应安装发电机2台.
解析已在路上飞奔,马上就到!