21.定义在上的函数,如果满足:对任意,存在常数,都有成立,则称是上的有界函数,其中称为函数的上界.已知函数.
(1)当时,求函数在上的值域,并判断函数在上是否为有界函数,请说明理由;
(2)若函数在上是以为上界的有界函数,求实数的取值范围.
22.在平面直角坐标系中,已知三点,,,曲线上任意—点满足:.
(1)求曲线的方程;
(2)设点是曲线上的任意一点,过原点的直线与曲线相交于两点,若直线的斜率都存在,并记为,.试探究的值是否与点及直线有关,并证明你的结论;
(3)设曲线与轴交于两点,点在线段上,点在曲线上运动.若当点的坐标为时,取得最小值,求实数的取值范围.
23.已知等比数列的首项,公比,数列前项和记为,前项积记为.
(1)证明:;
(2)求为何值时,取得最大值;
(3)证明:若数列中的任意相邻三项按从小到大排列,则总可以使其成等差数列;若所有这些等差数列的公差按从小到大的顺序依次记为,则数列为等比数列。