6.如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )
18. 如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.
(Ⅰ)证明:PB∥平面AEC;
(Ⅱ)设二面角D-AE-C为60°,AP=1,AD=,求三棱锥E-ACD的体积.
19.乒乓球台面被网分成甲、乙两部分,如图,甲上有两个不相交的区域,乙被划分为两个不相交的区域.某次测试要求队员接到落点在甲上的来球后向乙回球.规定:回球一次,落点在上记3分,在上记1分,其它情况记0分.对落点在上的来球,小明回球的落点在上的概率为,在上的概率为;对落点在上的来球,小明回球的落点在上的概率为,在上的概率为.假设共有两次来球且落在上各一次,小明的两次回球互不影响.求:
(Ⅰ)小明的两次回球的落点中恰有一次的落点在乙上的概率;
(Ⅱ)两次回球结束后,小明得分之和的分布列与数学期望.
请从第22、23、24三题中任选一题作答。
22.选修4—1:几何证明选讲
如图,四边形ABCD是⊙O的内接四边形,AB的延长线与DC的延长线交于点E,且CB=CE
(Ⅰ )证明:∠D=∠E;
(Ⅱ)设AD不是⊙O的直径,AD的中点为M,且MB=MC,证明:△ADE为等边三角形.
23.选修4—4:坐标系与参数方程
已知曲线:,直线:(为参数).
(Ⅰ )写出曲线的参数方程,直线的普通方程;
(Ⅱ)过曲线上任一点作与夹角为的直线,交于点,求的最大值与最小值.
24.选修4—5:不等式选讲
若,且.
(Ⅰ ) 求的最小值;
(Ⅱ)是否存在,使得?并说明理由.