19. 如图,在直三棱柱A1B1C1-ABC中,AB⊥AC,AB=AC=2,AA1=4,点D是BC的中点.
(1)求证:A1B∥平面ADC1;
(2)求平面ADC1与ABA1所成二面角的正弦值.
20. 已知椭圆C:的离心率为
,以原点为圆心,椭圆的短半轴长为半径的圆与直线
相切,
(1)求该椭圆C的方程;
(2)设,过点
作与x轴不重合的直线l 交椭圆P、Q两点,连接AP、AQ分别交直线
与M、N两点,试问直线MR、NR的斜率之积是否为定值? 若是求出该定值,若不是请说明理由。
请从22~24题总任选一题作答
22.选修4—1: 几何证明选讲.
如图,设为
的两直径,过
作
垂直于
,并与
延长线相交于点
,过
作直线与
分别交于
两点,连接
分别与
交于
.
(Ⅰ)设中点为
,求证:
四点共圆.
(Ⅱ)求证:.
23.选修4—4:坐标系与参数方程
已知直线l的参数方程为(t为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,曲线C的极坐标方程为ρ=4cosθ.
(1)分别将直线l和曲线C的方程化为直角坐标系下的普通方程;
(2)设直线l与曲线C交于P、Q两点,求|PQ|.
24.选修4—5: 不等式选讲.
已知函数的定义域为
.
(Ⅰ)求的取值范围;
(Ⅱ)当取最大值时,解关于
的不等式
.