8.有红、蓝、黄、绿四种颜色的球各6个,每种颜色的6个球分别标有数字1、2、3、4、5、6,从中任取3个标号不同的球,这3个颜色互不相同且所标数字互不相邻的取法种数为( )
9.函数:
①y=x•sinx;
②y=x•cosx;
③y=x•|cosx|;
④y=x•2x
的图象(部)如图所示,但顺序被打乱,则按照从左到右将图象对应的函数序号安排正确的一组是( )
10.已知函数f(x)是定义在R上的奇函数,当x<0时,f(x)=ex(x+1),给出下列命题:
①当x>0时,f(x)=ex(1-x);
②f(x)>0的解集为(-1,0)∪(1,+∞);
③函数f(x)有2个零点;
④∀x1,x2∈R,都有|f(x1)-f(x2)|<2;
其中正确命题的个数是( )
15.已知数列{an}是各项均不为0的等差数列,Sn为其前n项和,且满足an2=S2n﹣1(n∈N+).若不等式≤对任意的n∈N+恒成立,则实数λ的最大值为_____________。
17.数列{an}的前n项和为Sn,且an是Sn和1的等差中项,等差数列{bn}满足b1=a1,b4=S3.
(I )求数列{an}、{bn}的通项公式;
(II)设cn=,数列{cn}的前n项和为Tn,证明:Tn<.
18.如图,在四棱锥P﹣ABCD中,底面ABCD是直角梯形,AB∥DC,AB⊥AD,平面PAD⊥平面ABCD,若AB=8,DC=2,AD=6,PA=4,∠PAD=45°,且.
(1)求证:PO⊥平面ABCD;
(2)设平面PAD与平面PBC所成二面角的大小为θ(0°<θ≤90°),求cosθ的值.
19.某网站用“10分制”调查一社区人们的幸福度.现从调查人群中随机抽取16名,如图所示茎叶图记录了他们的幸福度分数(以小数点前的一位数字为茎,小数点后的一位数字为叶):
(1)指出这组数据的众数和中位数;
(2)若幸福度不低于9.5分,则称该人的幸福度为“极幸福”.求从这16人中随机选取3人,至多有1人是“极幸福”的概率;
(3)以这16人的样本数据来估计整个社区的总体数据,若从该社区(人数很多)任选3人,记ξ表示抽到“极幸福”的人数,求ξ的分布列及数学期望。
20.分别过椭圆E:=1(a>b>0)左、右焦点F1、F2的动直线l1、l2相交于P点,与椭圆E分别交于A、B与C、D不同四点,直线OA、OB、OC、OD的斜率分别为k1、k2、k3、k4,且满足k1+k2=k3+k4,已知当l1与x轴重合时,|AB|=2,|CD|=.
(1)求椭圆E的方程;
(2)是否存在定点M,N,使得|PM|+|PN|为定值?若存在,求出M、N点坐标,若不存在,说明理由。
21.已知函数φ(x)=lnx.
(1)若曲线在点处的切线与直线3x+y-1=0平行,求a的值;
(2)求证函数在(0,+∞)上为单调增函数;
(3)设m,n∈R+,且m≠n,求证:。