理科数学 济南市2015年高三试卷-济钢高级中学 月考

  • 33797人已学
单选题 本大题共10小题,每小题5分,共50分。在每小题给出的4个选项中,有且只有一项是符合题目要求。
1

1.设集合,则(   )

A

B

C

D

分值: 5.0分查看题目解析 >
2

2.函数的定义域为(  )

A

B

C

D

分值: 5.0分查看题目解析 >
3

3.以下有关命题的说法错误的是(  )

A

命题“若,则”的逆否命题为“若

B

”是“”的充分不必要条件

C

为假命题,则均为假命题

D

对于命题

分值: 5.0分查看题目解析 >
4

4.己知函数f(x)=,则f(5)的值为(  )

A

1

B

C

D

分值: 5.0分查看题目解析 >
5

5.设二次函数,如果,则等于(  )

A

B

C

D

分值: 5.0分查看题目解析 >
6

6.设a=,b=,c=,则a,b,c的大小关系是(  )

A

a>c>b

B

a>b>c

C

c>a>b

D

b>c>a

分值: 5.0分查看题目解析 >
7

7.已知,则的 (  )

A

充分而不必要条件

B

必要而不充分条件

C

充要条件

D

既不充分也不必要条件

分值: 5.0分查看题目解析 >
8

8. 函数y=2x-x2的图象大致是(  )

A

B

C

D

分值: 5.0分查看题目解析 >
9

9.已知偶函数满足条件f(x+1)=f(x-1),且当时,f(x)= 则 (  )

A

B

C

D

1

分值: 5.0分查看题目解析 >
10

10.已知函数是定义在R上的可导函数,其导函数记为,若对于任意实数x,有,且为奇函数,则不等式的解集为(  )

A

B

C

D

分值: 5.0分查看题目解析 >
填空题 本大题共5小题,每小题5分,共25分。把答案填写在题中横线上。
11

11.=__________.

分值: 5.0分查看题目解析 >
12

12.(lg 2)2+lg 2·lg 5+lg 5=________.

分值: 5.0分查看题目解析 >
13

13.设集合(   ).

分值: 5.0分查看题目解析 >
14

14.由曲线y=,直线y=x-2及y轴所围成的图形的面积为 _________

分值: 5.0分查看题目解析 >
15

15.设函数的定义域为D,若函数满足下列两个条件,则称在定义域D上是闭函数.

在D上是单调函数;

②存在区间,使上值域为

如果函数为闭函数,则的取值范围是__________.

分值: 5.0分查看题目解析 >
简答题(综合题) 本大题共75分。简答应写出文字说明、证明过程或演算步骤。
16

16.已知a>0,设命题p:函数y=axR上单调递增;命题q:不等式ax2-ax+1>0对∀x∈R恒成立.若p且q为假,p或q为真,求a的取值范围.

分值: 12.0分查看题目解析 >
17

17已知f(x)为定义在[-1,1]上的奇函数,当x∈[-1,0]时,f(x)=-(a∈R).

(1)写出f(x)在[0,1]上的解析式;

(2)求f(x)在[0,1]上的最大值。

分值: 12.0分查看题目解析 >
18

18.已知函数

(1)若a=-1,求f(x)的单调区间;

(2)若f(x)有最大值3,求a的值.

(3)若f(x)的值域是(0,+∞),求a的取值范围.

分值: 12.0分查看题目解析 >
19

19请你设计一个包装盒,如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E、F在AB上是被切去的等腰直角三角形斜边的两个端点,设AE=FB=cm.

(1)若广告商要求包装盒侧面积S(cm)最大,试问应取何值?

(2)若广告商要求包装盒容积V(cm)最大,试问应取何值?并求出此时包装盒的高与底面边长的比值.

   

分值: 12.0分查看题目解析 >
20

20.设

(I)求的单调区间和最小值;

(II)讨论的大小关系;

(III)求的取值范围,使得对任意>0成立。

分值: 13.0分查看题目解析 >
21

21已知函数有两个极值点,且

(1)求实数的取值范围,并讨论的单调性;

(2)证明:

分值: 14.0分查看题目解析 >