10.对于三次函数,给出定义:设是函数的导数,是的导数,若方程有实数解,则称点为函数的“拐点”。经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心。设函数,则 =( )
18.某公司计划在迎春节联欢会中设一项抽奖活动:在一个不透明的口袋中装入外形一样号码分别为1,2,3,…,10的十个小球。活动者一次从中摸出三个小球,三球号码有且仅有两个连号的为三等奖,奖金30元;三球号码都连号为二等奖,奖金60元;三球号码分别为1,5,10为一等奖,奖金240元;其余情况无奖金。
(1)求员工甲抽奖一次所得奖金ξ的分布列与期望;
(2)员工乙幸运地先后获得四次抽奖机会,他得奖次数的方差是多少?
20.设椭圆E中心在原点,焦点在x轴上,短轴长为4,点Q(2,)在椭圆上。
(1)求椭圆E的方程;
(2)设动直线L交椭圆E于A、B两点,且,求△OAB的面积的取值范围。
(3)过M()的直线:与过N()的直线:
的交点P()在椭圆E上,直线MN与椭圆E的两准线分别交于G,H两点,求的值。