3.m、n为两条不重合的直线,α、β为两个不重合的平面,则下列命题中正确的是( )
①若m、n都平行于平面α,则m、n一定不是相交直线;
②若m、n都垂直于平面α,则m、n一定是平行直线;
③已知α、β互相垂直,m、n互相垂直,若m⊥α,则n⊥β;
④m、n在平面α内的射影互相垂直,则m、n互相垂直
16.已知定义在R上的函数f(x)是奇函数且满足f(-x)=f(x),f(-2)=5,数列{}满足a1=-1,且=2×+1(其中为{}的前n项和),则f(a6)+f(a7)=____________.
17.如图所示,扇形AOB,圆心角AOB的大小等于,半径为3,在半径OA上有一动点C,过点C作平行于OB的直线交弧于点P.
(Ⅰ)若=,求线段PC的长;
(Ⅱ)设∠COP=θ,求线段CP与线段OC的长度的和的最大值及此时θ的值.
18. AB为圆O的直径,点E、F在圆上,AB∥EF,矩形ABCD所在平面与圆O所在平面互相垂直,已知AB=2,BC=EF=1.
(Ⅰ)求证:BF⊥平面DAF;
(Ⅱ)求平面ADF与平面CDFE所成的二面角的余弦值.
19.第22届索契冬奥会期间,来自俄罗斯国际奥林匹克大学的男、女大学生共9名志愿者被随机地平均分配到速滑、冰壶、自由式滑雪这三个岗位服务,且速滑岗位至少有一名女大学生志愿者的概率是.
(Ⅰ)求冰壶岗位至少有男、女大学生志愿者各一人的概率;
(Ⅱ)设随机变量X为在自由式滑雪岗位服务的男大学生志愿者的人数,求X的分布列及期望.
20. 已知圆N:和抛物线C:,圆N的切线l与抛物线C交于不同的两点A,B.
(Ⅰ)当直线l的斜率为-1时,求线段AB的长;
(Ⅱ)设点M点N关于直线y=x对称,问是否存在直线l,使得⊥?若存在,求出直线l的方程;若不存在,请说明理由.
21. 已知函数f(x)=(nx-n+2)·,(其中n∈R,e为自然对数的底数);
(Ⅰ)求f(x)在[0,1]上的最大值;
(Ⅱ)若函数g(x)=-13nx-30(n>1,n∈N﹡),当x>0时,若2>g(x)恒成立,求最大正整数n.
请在第22~24题中任选一题做答。
22.选修4—1:几何证明选讲
如图,△ABC内接于⊙O,AB=AC,直线MN切⊙O于点C,弦BD∥MN,AC与BD相交于点E.
(Ⅰ)求证:△ABE≌△ACD;
(Ⅱ)若AB=6,BC=4,求AE.
23.选修4—4:坐标系与参数方程
已知曲线C的极坐标方程为ρ=,直线l的参数方程为(t为参数,0≤α<π).
(Ⅰ)把曲线C的极坐标方程和直线l的参数方程化为直角坐标方程,并说明曲线C的形状;
(Ⅱ)若直线l经过点(1,0),求直线l被曲线C截得的线段AB的长.
24.选修4—5:不等式选讲
设函数f(x)=|2x-1|+|ax-3|,x∈R.
(Ⅰ)若a=1时,解不等式f(x)≤5;
(Ⅱ)若a=2时,g(x)=的定义域为R,求实数m的取值范围.