2. 有四个关于三角函数的命题:
:xR, +=
: x、yR, sin(x-y)=sinx-siny
: x,=sinx
: ,sinx=cosyx+y=
其中假命题的是 ( )
17.(1)设a>0,是R上的偶函数,求实数a的值;
(2)已知奇函数f(x)的定义域为[-2,2],且在区间[-2,0]内递减,求满足f(1-m)+f(1-m2)<0的实数m的取值范围。
18.设f(x)是定义在R上的奇函数,且对任意实数x,恒有f(x+2)=-f(x),当x∈[0,2]时,f(x)=2x-x2.
(1)求证:f(x)是周期函数;
(2)当x∈[2,4]时,求f(x)的解析式;
(3)计算f(0)+f(1)+f(2)+…+f(2 011)=0.
19. 某上市股票在30天内每股的交易价格P(元)与时间t(天)组成有序数对(t,P),点(t,P)落在下图中的两条线段上;该股票在30天内的日交易量Q(万股)与时间t(天)的部分数据如下表所示:
(1)根据提供的图象,写出该种股票每股交易价格P(元)与时间t(天)所满足的函数关系式;
(2)根据表中数据确定日交易量Q(万股)与时间t(天)的一次函数关系式;
(3)在(2)的结论下,用y表示该股票日交易额(万元),写出y关于t的函数关系式,并求在这30天中第几天日交易额最大,最大值是多少?
20.设a为实数,函数f(x)=ex-2x+2a,x∈R.
(1)求f(x)的单调区间与极值;
(2)求证:当a>ln 2-1且x>0时,ex>x2-2ax+1。