15.请从下面两题中任选一题作答。
(1)(坐标系与参数方程选做题)
已知曲线C的极坐标方程是,以极点为平面直角坐标系的原点,极轴为x的正半轴,建立平面直角坐标系。则曲线C的普通方程为__________。
(2)(不等式选做题)
设函数,当时,求不等式的解集为__________。
18. 实验中学的三名学生甲、乙、丙参加某大学的自主招生考核测试,在本次考核中只有合格和优秀两个等次,若考核为合格,则授予10分降分资格;考核为优秀,授予20分降分资格。假设甲、乙、丙考核为优秀的概率分别为、、,他们考核所得的等次相互独立。
(1)求在这次考核中,甲、乙、丙三名同学中至少有一名考核为优秀的概率;
(2)记在这次考核中甲、乙、丙三名同学所得的降分之和为随机变量,求随机变量的分布列和数学期望。
19. 如图,在四棱锥S-ABCD中,底面ABCD是直角梯形,侧棱SA⊥底面ABCD,AB垂直于AD和BC,SA = AB = BC = 2,AD = 1。M是棱SB的中点.
(1)求证:AM∥面SCD;
(2)求面SCD与面SAB所成二面角的余弦值;
(3)设点N是直线CD上的动点,MN与面SAB所成的角为θ,求sinθ的最大值。
20. 如图,是抛物线为上的一点,弦SC,SD分别交x轴于A,B两点,且SA=SB。
(1)求证:直线CD的斜率为定值;
(2)延长DC交x轴于点E,若,求的值。