4.我国女子短道速滑队在今年世锦赛上实现女子3000m接力三连冠。观察发现,“接棒”的运动员甲提前站在“交捧”的运动员乙前面,并且开始向前滑行,待乙追上甲时,乙猛推甲一把,使甲获得更大的速度向前冲出。在乙推甲的过程中,忽略运动员与冰面间在水平方向上的相互作用,则( )
8.质量为m1的物体放在A地的地面上,用竖直向上的力F拉物体,物体在竖直方向运动时产生的加速度a与拉力F的关系如图中直线A所示;质量为m2的物体在B地的地面上做类似的实验,得到加速度a与拉力F的关系如图中直线B所示,A、B两直线交纵轴于同一点,设A、B两地的重力加速度分别为g1和g2,由图可知( )
10.一个小球从高处由静止开始落下,从释放小球开始计时,规定竖直向上为正方向,落地点为重力势能零点。小球在接触地面前、后的动能保持不变,且忽略小球与地面发生碰撞的时间以及小球运动过程中受到的空气阻力。图中分别是小球在运动过程中的位移x、速度v、动能Ek和重力势能Ep随时间t变化的图象,其中正确的是( )
11.如图所示,一航天器围绕地球沿椭圆形轨道运动,地球的球心位于该椭圆的一个焦点上,A、B两点分别是航天器运行轨道上的近地点和远地点。若航天器所受阻力可以忽略不计,则该航天器( )
12.如图所示,在轻弹簧的下端悬挂一个质量为m的小球A,若将小球A从弹簧原长位置由静止释放,小球A能够下降的最大高度为h。若将小球A换为质量为2m的小球B,仍从弹簧原长位置由静止释放,则小球B下降h时的速度为(重力加速度为g,不计空气阻力)( )
13.高水速切割是一种高科技工艺加工技术,为完成飞机制造工程中高难度的工艺加工而特制了一台高压水切割坐标机器人,该机器人的喷嘴直径为0.5mm,喷嘴射流速度为空气中音速的3倍,假设水流射到工件上后的速度变为零。已知空气中音速约为m/s,水的密度为1×103kg/m3,高速射流在工件上产生的压力约为( )
15.如图所示为竖直平面内的直角坐标系。一个质量为m的质点,在恒力F和重力的作用下,从坐标原点O由静止开始沿直线OA斜向下运动,直线OA与y轴负方向成θ角(θ<90º)。不计空气阻力,重力加速度为g,则以下说法正确的是( )
16.物体在万有引力场中具有的势能叫做引力势能。若取两物体相距无穷远时的引力势能为零,一个质量为m0的质点距质量为M0的引力源中心为r0时,其万有引力势能(式中G为引力常数)。一颗质量为m的人造地球卫星以圆形轨道环绕地球飞行,已知地球的质量为M,由于受高空稀薄空气的阻力作用,卫星的圆轨道半径从r1逐渐减小到r2。若在这个过程中空气阻力做功为Wf,则在下面给出的Wf的四个表达式中正确的是( )
17.A、B两物体在同一直线上运动,当它们相距7m时,A在水平拉力和摩擦力的作用下,正以4m/s的速度向右做匀速运动,而物体B此时速度为10m/s,方向向右,它在摩擦力作用下做匀减速运动,加速度大小为2m/s2。求:
(1)A追上B之前两者之间的最大距离;
(2)A追上B所用的时间。
18.如图所示,一质量m=0.20kg的滑块(可视为质点)从固定的粗糙斜面的顶端由静止开始下滑,滑到斜面底端时速度大小v=4.0m/s。已知斜面的倾角θ=37°,斜面长度L=4.0m,sin37°=0.60,cos37°=0.80,若空气阻力可忽略不计,取重力加速度g=10m/s2。
求:
(1)滑块沿斜面下滑的加速度大小;
(2)滑块与斜面间的动摩擦因数;
(3)在整个下滑过程中重力对滑块的冲量大小。
19.如图所示,质量为m的小球B,用长为的细绳吊起处于静止状态,质量为m的A球沿半径为的光滑圆弧轨道,在与O点等高位置由静止释放,A球下滑到最低点与B球相碰,若A球与B球碰撞后立刻粘合在一起。
求:
(1)A球下滑到最低点与B球相碰之前瞬间速度v的大小;
(2)A球与B球撞后粘合在一起瞬间速度v共的大小;
(3)A球与B球撞后的瞬间受到细绳拉力F的大小。
20.人类第一次登上月球时,宇航员在月球表面做了一个实验:将一片羽毛和一个铁锤从同一个高度由静止同时释放,二者几乎同时落地。若羽毛和铁锤是从高度为h处下落,经时间t落到月球表面。已知引力常量为G,月球的半径为R。
(1)求月球表面的自由落体加速度大小;
(2)若不考虑月球自转的影响,求:
a.月球的质量M;
b.月球的“第一宇宙速度”大小v。
21.如图所示,光滑水平轨道右端B处平滑连接着一个在竖直面内、半径为R的光滑半圆轨道,在距离B为x的A点,用水平恒力F(未知)将质量为m的物块(可视为质点),从静止开始推到B处,且物块到B处时立即撤去恒力F,物块沿半圆轨道运动到轨道最高点C处后,又正好落回A点。已知重力加速度为g。
求:
(1)水平恒力F对物块所做的功W与物块在光滑水平轨道运动的位移x的关系式;
(2)x取何值时,完成上述运动水平恒力F对物块所做的功最少,功的最小值为多少;
(3)x取何值时,完成上述运动水平恒力F最小,最小力为多大。
22.(1)质量m=1.0kg的物块A(可视为质点)与轻弹簧的上端连接,弹簧下端固定在光滑斜面底端,斜面的倾斜角θ=30º。平衡时,弹簧的压缩量为x=0.20m,此时具有的弹性势能Ep=0.50J,物块A处在O时弹簧为原长,如图所示。一质量m=1.0kg物块B(可视为质点)从距离物块A为d=2.0m处从静止开始沿斜面下滑,与物体A发生碰撞后立刻一起向下运动,但不粘连,它们到达最低点后又向上运动。求物块B向上运动到达的最高点与O的距离s。g=10m/s2
(2)如图所示,弹簧的一端固定在天花板上,另一端连接一个小球,弹簧质量不计,劲度系数为k,小球(可视为质点)的质量为m,将小球竖直悬挂起来,小球平衡的位置为坐标原点O。
将小球在竖直方向拉离平衡位置后释放,小球就在竖直方向运动起来。我们知道,以小球、地球、弹簧组成的系统,动能、弹性势能和重力势能的总和保持不变。如果把弹性势能和重力势能的和称为系统的势能,并规定小球处在平衡位置时系统的势能为零,请根据“功是能量转化的量度”,求小球运动到O点下方x处时系统的势能。