3.一倾角为θ=37°的粗糙斜面与一光滑的半径R=0.9m的竖直圆轨道相切于P点,O 点是轨道圆心,轨道上的B点是最高点,D点是最低点,C点是最右的点,斜面上的A点与B点等高。一质量m=1.0kg的小物块在A点以沿斜面向下的初速度v0刚好能在斜面上匀速运动,通过P点处的小孔进入圆轨道并恰能做完整的圆周运动。g=10m/s2,sin37°=0.6,cos37°=0.8。则下列说法正确的是()
9.如图所示,A、B两物体的质量分别为m和2m,中间用轻弹簧相连,A、B两物体与水平面间的动摩擦因数均为μ,在水平推力F作用下,A、B一起以加速度向右做匀加速直线运动.当突然撤去推力F的瞬间,A、B两物体的加速度大小分别为( )
1.将物体以某一速度竖直向上抛出,到达最高点后返回,运动过程中所受空气阻力与速度成正比.重力加速度取10m/s2,取向上方向为正方向.则此物体的加速度随时间变化的图象可能正确的是()
4.如图,在倾角为α的固定光滑斜面上,有一用绳子栓着的长木板,木板上站着一只猫.已知木板的质量是猫的质量的2倍.当绳子突然断开时,猫立即沿着板向上跑,以保持其相对斜面的位置不变.则此时木板沿斜面下滑的加速度为( )
A、在B点,由mg=m,得:vB=
=3m/s
从P到B,由机械能守恒定律得:mgR(1+cos37°)+=
解得:v0=m/s>3m/s.故A错误.
B、物块在斜面上做匀速运动,由平衡条件得:mgsin37°=μmgcos37°,得:μ=0.75.故B错误.
C、从D到B的过程,由机械能守恒定律得:mg•2R+=
在D点,由牛顿第二定律得:FD′﹣mg=m
联立解得:FD′=6mg=60N,由牛顿第三定律知,小物块在D点时对轨道压力FD=FD′=60N.故C正确.
D、小物块在C点受到重力和轨道水平向左的弹力,其合外力斜向左下方,故D错误.
小球从P到B的过程,运用机械能守恒定律列式.在B点,由重力等于向心力列式,联立可求得v0.对AP段,运用平衡条件列式可求得动摩擦因数μ.根据小物块的受力情况,分析在C的合外力方向.由机械能守恒定律求出小物块经过D点的速度,再由牛顿运动定律求小物块对轨道的压力.
本题的关键要根据物块的运动过程和状态,灵活选取力学规律解答,要知道最高点的临界条件是重力等于向心力.圆周运动中求压力往往根据机械能守恒定律和向心力结合研究.