10.多个串的公共子串问题 PKU3294
首先将串连接起来,然后构造height数组,然后怎么办呢?
对,二分答案再判断是否可行就行了。可行条件很直观:有一组后缀,有超过题目要求的个数个不同的字符串中的后缀存在。即,假如题目要求要出现在至少k个串中,那么就得有一组后缀,在不同字符串中的后缀数大于等于k。
11、出现或反转后出现所有字符串中的最长子串 PKU1226
12、不重叠地至少两次出现在所有字符串中的最长子串
之所以把两题一起说,因为它们大同小异,方法在前面的题目均出现过。对于多个串,连起来;反转后出现,将每个字符串反写后和原串都连起来,将反写后的串和原串看成同一个串;求最长,二分答案后height分组;出现在所有字符串中(反写后的也行),判断方法和10一样,k=n而已;不重叠见问题4,只不过这里对于每个字符串都要进行检验而已。
13、两个字符串的重复子串个数。 Pku3415
我个人觉得颇有难度的一个问题。具体的题目描述参看Pku3415。
14、最后的总结
用后缀数组解题有着一定的规律可循,这是后缀的性质所决定的,具体归纳如下:
[1] N个字符串的问题(N>1)
方法:将它们连接起来,中间用不会出现在原串中的,互不相同的,非0号字符分隔开。
[2] 无限制条件下的最长公共子串(重复子串算是后缀们的最长公共前缀)
方法:height的最大值。这里的无限制条件是对子串无限制条件。最多只能是两个串的最长公共子串,才可以直接是height的最大值。
[3] 特殊条件下的最长子串
方法:二分答案,再根据height数组进行分组,根据条件完成判定性问题。三个或以上的字符串的公共子串问题也需要二分答案。设此时要验证的串长度为len,特殊条件有:
<3.1> 出现在k个串中
条件:属于不同字符串的后缀个数不小于k。(在一组后缀中,下面省略)
<3.2> 不重叠
条件:出现在同一字符串中的后缀中,出现位置的最大值减最小值大于等于len。
<3.3> 可重叠出现k次
条件:出现在同一字符串中的后缀个数大于等于k。若对于每个字符串都需要满足,需要逐个字符串进行判断。
[4] 特殊计数
方法:根据后缀的性质,和题目的要求,通过自己的思考,看看用后缀数组能否实现。一般和“子串”有关的题目,用后缀数组应该是可以解决的。
[5] 重复问题
知道一点:lcp(i,i+k)可以判断,以i为起点,长度为k的一个字符串,它向后自复制的长度为多少,再根据具体题目具体分析,得出算法即可。