后缀树的用途,总结起来大概有如下几种 :
1. 查找字符串o是否在字符串S中
方案:用S构造后缀树,按在trie中搜索字串的方法搜索o即可。
原理:若o在S中,则o必然是S的某个后缀的前缀。
听起来有点拗口,举个例子。例如S: leconte,查找o: con是否在S中,则o(con)必然是S(leconte)的后缀之一conte的前缀。有了这个前提,采用trie搜索的方法就不难理解了。
2. 指定字符串T在字符串S中的重复次数
方案:用S+'$'构造后缀树,搜索T节点下的叶节点数目即为重复次数 。
原理:如果T在S中重复了两次,则S应有两个后缀以T为前缀,重复次数就自然统计出来了。
3. 字符串S中的最长重复子串
方案:原理同2,具体做法就是找到最深的非叶节点。
这个深是指从root所经历过的字符个数,最深非叶节点所经历的字符串起来就是最长重复子串。为什么要非叶节点呢?因为既然是要重复,当然叶节点个数要>=2。
4. 两个字符串S1,S2的最长公共部分
方案:将S1#S2$作为字符串压入后缀树,找到最深的非叶节点,且该节点的叶节点既有#也有$(无#)。大体原理同3。
///////////////////////////////////////////////////////////
后缀树的存储:为了节省空间,我们不在边上存储字符串,而是存储该字符串在原串中的起止位置,空间复杂度O(n)。
后缀树的构造:最简单的方法,使用Trie的构造方法,时间复杂度为O(n^2);
后缀树也可以在O(n)的时间复杂度内构造,但比较复杂。
如,基本思路:先向后缀树中插入最长的后缀串(S本身),其次插入次长的后缀串,以此类推,最后插入空串。定义后缀链接(Suffix Link)=从节点A指向节点B的指针,B所表示的子串是A所表示的子串的最长后缀。既,根节点到A所经过的字符串s=aw,则从根节点到B所经过的字符串为w。
算法所用符号描述:
后缀树的构造,算法流程:
1)定义SL(root)=root,首先插入S,此时后缀树仅有两个节点。
2)设已经插入了S(i),现在要插入S(i+1),分两种情况讨论:
1:P(S(i))在插入之前已经存在,(如,na,ana,a是na的parent),则P(S(i))有后缀链接,令u=SL(P(S(i))),从u开始沿着树往下查找,在合适的地方插入。
2:P(S(i))是插入S(i)过程中产生的,此时G(S(i))必定存在并有后缀链接,比如(na,ana,bana),令u=SL(G(S(i))),w=W(G(S(i)),P(S(i))).从u开始,对w进行快速定位, 在合适的地方插入新的节点。
不断重复以上步骤,即可完成后缀树的构造。