式中:Dt为在时间T内与某一特定普通股相联系的预期的现金流,即在未来时期以现金形式表示的每股股票的股利;K为在一定风险程度下现金流的合适的贴现率; V为股票的内在价值。
在这个方程里,假定在所有时期内,贴现率都是一样的。由该方程我们可以引出净现值这个概念。净现值等于内在价值与成本之差,即
式中:P为在t=0时购买股票的成本。
如果NPV>0,意味着所有预期的现金流入的净现值之和大于投资成本,即这种股票被低估价格,因此购买这种股票可行;
如果NPV<0,意味着所有预期的现金流入的净现值之和小于投资成本,即这种股票被高估价格,因此不可购买这种股票。
在了解了净现值之后,我们便可引出内部收益率这个概念。内部收益率就是使投资净现值等于零的贴现率。如果用K*代表内部收益率,通过方程可得
由方程可以解出内部收益率K*。把K*与具有同等风险水平的股票的必要收益率(用K表示)相比较:如果K*>K,则可以购买这种股票;如果K*<K,则不要购买这种股票。
一股普通股票的内在价值时存在着一个麻烦问题,即投资者必须预测所有未来时期支付的股利。由于普通股票没有一个固守的生命周期,因此建议使用无限时期的股利流,这就需要加上一些假定。
这些假定始终围绕着胜利增长率,一般来说,在时点T,每股股利被看成是在时刻T—1时的每股股利乘上胜利增长率GT,其计
例如,如果预期在T=3时每股股利是4美元,在T=4时每股股利是4.2美元,那么不同类型的贴现现金流模型反映了不同的股利增长率的假定。